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Abstract—Three sets of characteristic scales for the conduction layer, the transition layer and the convection
layer are proposed to analyze the mean thermal structure in a turbulent thermal convection without mean
motion. These scales are formulated based on molecular or turbulent eddy contribution to the momentum
and heat transports in each layer. Using the proposed scales and a gradient matching technique at the
interface between two adjacent layers, Kraichnan’s (Physics Fluids 5, 1374 (1962)) multi-layered structure
of the mean temperature gradient profile is re-established. If the conduction scales are used to non-
dimensionalize mean temperature gradient data near the wall, they form a plausible correlation curve that
is nearly independent of the Prandtl number and the Rayleigh number for the range of experiments. From
the correlation curve, it is found that the convection layer or the similarity layer with the slope of —4/3
begins to appear after about z, ~ 15 and the proportionality constant of the —4/3 power law of the mean
temperature gradient is found to be about 0.6 or d®,/dz, = 0.6z;%% where ®, and z, are non-
dimensional temperature and distance scaled by the respective conduction scales. Further, a wall-layer
model for the mean temperature gradient profile is formulated in accordance with the power law,
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d®_/dz, ~ z;*, across the layers, which is in good agreement with the data.

1. INTRODUCTION

ALTHOUGH turbulent thermal convection over a
heated horizontal flat plate without mean flow has
been studied by many investigators during the past
decade, the mean temperature profile in the fluid layer
is still controversial. The seemingly simple picture of
the turbulent thermal convection is complicated by
the Prandtl number effect which dictates relative mag-
nitude between rates of momentum and heat transfer
by the molecular motion. Priestley [1] in his dimen-
sional analysis and mechanistic theory of turbulent
thermal convection problem over a horizontal terrain
showed that the mean temperature gradient can be
represented by a power law, d7/dz o« z7% and
suggested that « = 4/3, the so-called similarity law.
Malkus [2] applied a variational method to turbulent
thermal convection in a fluid layer between two hori-
zontal flat plates (Rayleigh convection) and predicted
that o = 2.

Later, Priestley’s similarity law was theoretically
supported by Kraichnan [3] who developed a modified
mixing length theory for the analysis of the Rayleigh
convection. His results suggest that, when the Prandtl
number (Pr) of fluid is greater than a transition
Prandtl number (Pr,), at which momentum and heat
are transported at the same rate, there exists a power
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law layer with « = 2 between the conduction layer
very close to the wall and the similarity layer. Later,
Panofsky [4] again conformed the similarity layer by
an application of the matching condition between the
Monin—-Obukov scaling and a convective scaling in
the planetary boundary layer. There have been a num-
ber of experimental observations in laboratories and
in the open atmosphere, however, considerable
controversy on the power law profile of the mean
temperature gradient still prevails.

In summary, Townsend [5], Goldstein and Chu [6],
Chu and Goldstein [7) and Carrol [8] obtained power
law profiles with « =2 in laboratory convection
chambers. Croft’s [9] laboratory data, data of Dyer
[10] and Businger et al. [11] in the windless free con-
vection region of the atmospheric boundary layer give
a good correlation with a = 1.5. Although Deardorff
and Willis’ [12] data for air in a range of Rayleigh
numbers (Ra) between 10 and 108 follow the power
law with « = 2 more closely, they observed a tendency
of the index a to approach 4/3 as Ra becomes larger;
thus Priestley’s similarity law seems to be an asymp-
totic case for Ra — 0.

The concept of a layered structure has been adopted
in Kraichnan’s [3] mixing length analysis and in
Carrol’s [8] interpretation of the thermal structure
observed in a Rayleigh convection chamber with air.
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Pr Prandtl number

transition Prandtl number

o total kinematic heat flux

Ra  Rayleigh number

t time

T mean temperature

T. temperature of the upper plate
T, temperature of the bottom plate

AT temperature difference between two plates

AT, temperature difference across the
conduction layer

u,w velocity fluctuations

u, friction velocity

U mean velocity

w,  mean of r.m.s. values of the vertical
advective velocity in the conduction
layer

z distance from bottom plate.

Greek symbols
o power law index

NOMENCLATURE
¢ coefficient (equation (32)) B thermal expansion coefficient
g gravitational acceleration . conduction layer thickness
H distance between two plates d;;  Kronecker delta
k turbulent kinetic energy 0 temperature fluctuation
Nu  Nusselt number [ mean of r.m.s. temperature fluctuations in
p pressure fluctuation the conduction layer
P mean pressure ®, non-dimensionalized temperature

K molecular diffusivity of heat, or von
Karman constant

K,  buoyancy similarity constant

K, eddy diffusivity of heat

v molecular viscosity
v eddy diffusivity of momentum
density

Ty wall shear stress.

Subscripts
c conduction layer
i,j  Cartesian tensor indices, or reference
layer indices

K transition layer for Pr « Pr,
v transition layer for Pr > Pr,
* convection layer
+  dimensionless value by conduction
scale.
Superscript

instantaneous variables.

Carrol’s results did not, however, conform Kraich-
nan’s three-layered structure. Instead, he argued that
it consists of a ‘conduction layer’ very close to the
bottom plate, a ‘transition layer’ in which « = 2 and
an ‘interior region’ in which o — .

Recently, there has been considerable progress in
developing computational turbulence models for
predicting buoyancy-affected convection flows; for
example, Zeman and Lumley [13], Ljuboja and Rodi
[14], Chung and Sung [15], Shih and Lumley [16] and
Weinstock [17]. Since, however, most computational
models are valid for high Peclet number flows, a wall
function which describes the mean temperature vari-
ation near the wall is definitely called for in order to
provide the near-wall boundary conditions for the
high-Peclet-number-modeled turbulence equations
which work only within the interior fluid layer. A
similar approach has been widely used in com-
puting wall-bounded shear flows by employing the
well-known logarithmic mean velocity profile scaled
by the plausible characteristic friction velocity
u, = \/(rw/p) and length v/u,. In order to find such a
wall function for the mean temperature profile in the
turbulent thermal convection, it is required to clarify
further the controversial power law and to devise
proper characteristic wall scales of velocity, length
and temperature. These requirements are the motiv-
ation of the present study.

2. CHARACTERISTIC SCALES

A new four-layered structure is proposed as in Fig.
1, where most responsible mechanisms for transport
of momentum and heat are shown for two cases Pr >
Pr, and Pr « Pr,, separately. Recall that the trans-
ition Prandtl number Pr, was estimated to be about
0.1 by Kraichnan [3].

Evidently, transport processes in layer I, the ‘con-
duction layer’, are dominated by molecular viscosity
(v) and molecular diffusivity of heat (x). In layers I1I
and TV, the ‘convection layer’ and the ‘buoyancy-
defect layer’ [18], respectively, eddy diffusivity of
momentum (v,) and heat (x,) are assumed to be pre-
dominant. For fluid with Pr>» Pr,, molecular vis-
cosity and eddy diffusivity are important mechanisms
in the ‘transition layer’ (layer II), and the converse
is true for fluid with Pr « Pr,. Relevant governing
equations for the flow field without mean motion are

u, 0 - 1 dp
E + 5-;; (u,—u,—u,-uj) = ;—a;l
v 0% 0,2,
a ('}sz. + 7’395953,' (H
oT 0 k 0T —
0= e i ) @

where the Boussinesq approximation and Reynolds
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F1G. 1. A proposed four-layered structure and transport mechanisms in turbulent thermal convection.

decomposition, # = U,+u, T=T+86, P=P+p
have been used and nondimensionalized by a velocity
scale w,, a length scale z, and a temperature defect
scale §,. For a steady flow field, the total kinematic
heat flux Q which is the sum of the molecular and the
turbulent kinematic heat fluxes

Q ar + wo
=o——4w

dz
is constant across the layers, and it is an important
independent reference quantity which relates 6, and
w, as

0 =w,0, 3

throughout the layers. The buoyancy term in equation
(1) is most active at any point in the fluid which causes
the fluid to be in turbulent convective motion. This
observation and relation (3) lead us to another scaling
law

L @)

Wp

(a) Convection layer 111

Now, since molecular terms in equations (1) and
(2) are negligible in layer III, the characteristic length
scale of large-scale eddy motion should be determined
by the geometry. Hence, we choose z, = H, the dis-
tance between two plates. Denoting the characteristic
scales in layer III by a subscript , equations (3) and
(4) and the length scale, z, = H, yield the following
scaling laws :

z,=H (5)
w, = (980z,)"" (6)

0, = Q/w, Q)

which are precisely the same as Deardorff [19].

(b) Transition layer II

When Pr > Pr,, the diffusion term in equation (2)
is negligible but that in equation (1) must be set to a
constant value.

For convenience, we let

v

=1. (8)

WpZp

Then equations (3), (4) and (8) determine the follow-
ing transition scaling law for Pr > Pry:

w, = (ghvQ)"* ©)
v

z, = ;‘, (10)
Q

0, = e (11

Similarly, for Pr « Pr,, we obtain

w, = (ghe@)"* (12)
=— (13)

WY
6.-2. (14)

WK

(c) Conduction layer 1

In the conduction layer, both the momentum and
heat are transferred by the molecular motions, and
Long [18] assumed that the advective motion in the
vertical direction is balanced by the conduction
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W<~ 1

where w/ is the mean of r.m.s values of the vertical
advective velocity in the conduction layer and §, the
conduction layer thickness. Also it is assumed by
Long [18] that within the conduction layer, the buoy-
ancy force, gp0., where 0. is the mean of r.m.s. tem-
perature fluctuations, and the viscous force, vw(/d2,
are of the same order

’

— WC
gpo; ~ vse-

But, since most heat is transferred by the molecular
conduction in the conduction layer, we may have the
following order-of-magnitude relation :

Q ~ kAT, /o,

where AT, is the temperature drop across the con-
duction layer. Moreover, since ¢, is of the order of
AT,, the following approximations can be made:

Q ~ 1B:/8. ~ kvw([(gPdd) ~ kvwl*/(gpK).

Consequently, if such an approximate value of w/
in the above relation is selected as the characteristic
velocity scale in the conduction layer, we finally have

2 i/4
we = (kvgﬁQ> .

Then, the length scale z. can be set as the same as
S, ~ K/w,

(15)

(16)

zZ, = —
WC

and the temperature scale is estimated by equation (3)
as follows:

0. = Q. an

W,

3. GRADIENT MATCHING AND POWER LAWS

Let us assume that the mean temperature profiles
in two adjacent layers, / and j, can be scaled by

-7, | z
0, =/ z;

T-T, z
0 —f?(z)

where T; and T; are reference temperatures, z; and z;
are length scales and 6, and 6, are temperature defect
scales for layers i and j, respectively. Then, a smooth
gradient matching at the interface between the two
layers requires the following condition :

dfi(z/z) (4)(@-) dfi(z/z)
d(z/z) ~ \z/\8.) d(z/z)

(18)

and

(19)

20

(a) Case 1, Pr> Pr,

When we apply condition (20) to the interface
between the conduction layer and the transition layer,
the scale relations (11) and (17) make the coeflicient
in the right-hand side of equation (20) to be (z./z,)
0,/0.) = (z/z,) X (w/w,). Using equations (9) and (15),
it is easy to show that w/w, = z/z,. Then, the co-
efficient becomes (z./z,)%. Finally, multiplying both
sides by (z/z.)? yields the following equation :

2Nz (2} )
z.) d(z/z) ~ \z.) d(z/z)
Since the left-hand side of this equation depends only
on z/z. and the right-hand side only on z/z,, each side
must be a constant. Hence, we obtain a power law
dr

S 2)

2y

Similarly, at the interface between the transition
layer and the convection layer, condition (20) yields
the following equation :

EA RGN N N CER T
z,) dz)  \z,/) d@/zy)
We obtain Priestley’s similarity law
ar .,

It should be noted that the power law with o =2
does exist between the conduction layer and the con-
vection layer for Pr > Pr, as has been observed by
many experiments mentioned before.

(b) Case 2, Pr « Pr,

The gradient matching condition (20) at the inter-
face between the conduction layer and the transition
layer yields

dfc(z/z.) _ dfi(z/z0)
d(z/ze) — d(z/z)

which gives a profile

= constant (25)

(Ih,—T)cz (26)

where T, is the temperature of the bottom plate.

A similar application of equation (20) at the inter-
face between the transition layer and the convection
layer shows again that Priestley’s similarity law (24)
must hold in this region.

Now, the linear profile (26) implies that, when
Pr « Pr,, the conduction layer penetrates deep into
the interior fluid to directly contact the convection
layer.

The above results are precisely the same as those
of Kraichnan’s [3] mixing length analysis, which are
summarized in Fig. 2. Past objections on the existence
of the similarity layer by many experimental studies
may be due to the fact that their measurements may
not have been made in a range far enough from the
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Fi6. 2. Theoretical profiles of mean temperature gradients in turbulent thermal convection : () Pr > Pr,;
(b) Pr« Pry.

bottom plate to find the similarity layer, or that the
magnitude of Ra is not large enough for the flow field
to have the similarity layer (see Long [18]).

4. MEAN TEMPERATURE GRADIENT PROFILE
AND ITS WALL-LAYER MODEL

In order to investigate the feasibility to formulate a
wall-layer model for the mean temperature gradient
profile with the proposed conduction scales, mean
temperature profile data reported in various literature
are re-analyzed. Although there are a number of
experimental results available, many of them could
not be used for one of the following reasons: (1)
Rayleigh numbers were not large enough to have the
similarity layer; (2) they have only a few data points,
thus, the mean temperature gradients cannot be ob-
tained ; (3) only the mean temperature profiles within
a relatively thin layer were available in the reports;
(4) necessary experimental values for conversion of
the scales are not presented.

Therefore, experimental data of Goldstein and Chu
[6] and Yun and Chung [20] for air and Chu and
Goldstein [7}, Yun and Chung [20] for water are used
in the present analysis.

Figure 3 shows the profiles of mean temperature
gradients in air for Ra in a range, 8.12x10° < Ra
£ 9.56x 107, presented by Goldstein and Chu [6]
and Yun and Chung [20]. The gradient data of the
former study were obtained by fitting five successive
temperature measurements, using a Mach-Zehnder
interferometer, with a second-order polynomial
to get the slope at the position of the central point,
and those of the latter were calculated by differ-
entiating the cubic spline interpolated curve to the
point-wise mean temperature data measured by the
resistence wire method. The data points scatter re-
latively widely. However, it is not difficult to identify
the three distinct power law regions ; namely, the zero-

gradient region in z, < ~1.2, —2 power law region
in ~1.2 <z, < ~12, and the —4/3 similarity region
inz, > ~15. Goldstein and Chu [6] claimed that their
data fitted to the —2 slope quite well over a large range
of z, for high Ra. It is, however, interesting to note
that their data remarkably follow the —4/3 slope in a
region z, > 15, which is wider than that for the —2
slope in a region, 2.5 <z, < 8.5.

Similarly, mean temperature gradient data in water
of Chu and Goldstein [7] and Yun and Chung [20]
are plotted in Fig. 4. Here, the data for z, > 8 scatter
very widely. However, a close examination of the indi-
vidual data sets does suggest that there exists a —4/3
similarity region again in this water case. It may be
argued that Chu and Goldstein [7] have fitted the —3
slope to their data in ref. [7]. However, Fig. 17 in ref.
[7] does not seem to support such — 3 slope behavior.
It is good only for the case of Ra = 9.34 x 10%. The
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FiG. 3. Mean temperature gradient profiles in Rayleigh con-
vection of air.
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F1G. 4. Mean temperature gradient profiles in Rayleigh con-
vection of water.

other two profiles in the same figure for Ra=
5.88 x 10° and 7.09 x 10° vary quite differently from
the data of Ra =9.34x10%, and it is rather a sur-
prise to find that the upper three points of Ra =
5.88x 10° nicely demonstrate the —4/3 similarity
law, albeit they are low relative to other data.

If the similarity law

40, Q@7

is fitted to the data in Figs. 3 and 4, it can be seen that
the ‘buoyancy similarity constant’ k, lies in the range
0.4-0.85, which can be found from the cutting points
of the —4/3 slope lines through the data to the axis
z, = 1.0.

Now, we are in a position to derive a wall-layer
model which represents the thermal structure near the
wall region, which can be used as a supplementary aid
to the computation of the turbulent thermal con-
vection problem with the current computational
models.

The capability to accurately represent the near-wall
temperature variation is important in computing the
wall bounded flows since intensive variation of the
mean temperature profile in the wall layer requires a
very large number of computational mesh points.
More importantly, an adequate computational model
for the near-wall thermal turbulence is not presently
available, and, therefore, wall functions are required
to provide near-wall boundary values for the tur-
bulence variables under consideration.

As for a reference, formulations of the near-wall
velocity profile functions are briefly reviewed as
follows. Dean [21] proposed an implicit formula by
combining Spalding’s [22] implicit function for the
mean velocity profile in the viscous sublayer, tran-
sition layer and the logarithmic layer with Finley et
al.’s [23] wake function for the outer layer. In order to

obtain a more convenient explicit expression, Musker
[24] devised an interpolating formula for turbulent
eddy viscosity which is valid both in the near-wall
layer and in the logarithmic law of the wall layer.
Quite recently, Walker ez al. [25] and Haritonidis [26]
have proposed wall-layer models for the near-wall
velocity profile in turbulent flows based on the coher-
ent bursting process in the wall region.

Parallel to the derivation of Musker [24], which is
the simplest and easily extendable to the temperature
field, a formula for the mean temperature gradient
profile in the turbulent thermal convection may be
obtained as follows. When an eddy diffusivity model
is employed for the turbulent kinematic heat flux, we
have

oT
Kigo

wh = — (28)
Here k, is the eddy diffusivity of heat and wf the
turbulent kinematic heat flux in the positive z-direc-
tion. Then the non-dimensional energy equation for
a horizontal homogeneous field becomes

<1 + 5‘) ®. _ 1
K/ oz,
where the first term on the left-hand side in this equa-
tion represents the molecular contribution and the
second term, the turbulent eddy contribution to the
total heat flux. It may be easily shown that, for a

region very close to the wall, the mean temperature
profile is very nearly linear

(29)

O, =z,
and that the eddy diffusivity is proportional to the
cube of the distance from the wall

Ky
— = ¢z}
K

(30)
where ¢ is a constant to be determined with reference
to mean temperature data. This derivation is in exact
analogy with that for the turbulent eddy viscosity very
near the wall in the turbulent boundary layer or duct
flows [24].

In the transition layer, assuming x/x > 1, the
power law with « = 2 as in equation (22) together
with energy equation (29) yields the following
approximation:

K, ,
—oC Z. 31
pa s (€19)]
Likewise, in the similarity layer, we must have
s 1 4/3
—=—2z33 32
KKy Zy (32)

where k, is the counter-part of the well-known von
Karman constant k ~ 0.4 in the logarithmic velocity
profile formula, and may be called the ‘buoyancy simi-
larity constant’.
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F1G. 5. Mean temperature profiles in Rayleigh convection of air and water.

The variation of x,/x along the vertical distance
from the bottom plate may be represented by a form

1 1 Ky
LI LN 33
Kk czy  z¥? (33)

which successively satisfies requirements (30)—(32);
ie K/k—z3 asz, -0, k/xk—>z{3as z, > o0 and
K./x — z2 in between these limits.

Substitution of equation (33) into energy equation
(29) yields

00, 1 +xryez

0z, l4rpez]?+cz3”

(34

The computed profile of the temperature gradient
by equation (34) with x, = 0.6, ¢ = 0.045 for air and
with «, = 0.6, ¢ = 0.05 for water are shown in Figs. 3
and 4. The extent of the power law layer of o =2
depends on the constant ¢, and the temperature gradi-
ent for small z, < 10 is very much more dependent on ¢
than k,. The constant ¢ turns out to be a function of
Prandtl number, whereas k,, seems to have a universal
value like the von Karman constant k = 0.4. How-
ever, any conclusive statement cannot be made due
to insufficiency of data for different Pr.

In computing the turbulent thermal convection, the
information about the thermal field required to solve
the governing equations for other turbulence quanti-
ties, for examples, the turbulent kinetic energy k, the
kinematic heat flux wh and the temperature variance
7, is the mean temperature gradient, rather than the
mean temperature itself. Therefore, the wall-layer
model (34) is sufficient as the supplementary relation
to turbulence model equations at a certain closure
level. However, it may be of practical interest to find
the mean temperature profile near the wall region,
and it can be easily obtained by integrating the wall
function (34) from the wall, z, = 0. The integrated
mean temperature profiles with the constant «;, = 0.6
and ¢ = 0.045 and 0.05 are compared with the exper-
iments of Goldstein and Chu [6] for air, and of Chu
and Goldstein [7] for water in Fig. 5. Overall agree-

ments between the theory and the data are satis-
factory, and the comparison clearly demonstrates that
the proposed conduction scales perform well to rep-
resent the mean temperature profiles near the wall
region with a simple wall-layer model.

5. CONCLUSIONS

Under an assumption that a fluid layer in a tur-
bulent thermal convection between two horizontal flat
plates has a layered structure, three sets of character-
istic scales have been formulated and these are used
to confirm the power law behavior of the mean
temperature profiles of Kraichnan [3]. The results
show that, for high Prandtl number, the fluid layer
consists of a conduction layer in which the mean tem-
perature profile is almost linear, a transition layer in
which (d7/dz) oc z72, and a convection layer or a
similarity layer in which (dT/dz) o z=*3, and that,
for low Prandtl number, the fluid layer consists of two
layers, a conduction layer and a convection layer.

Experimental mean temperature data available in
the literature were collected and re-analyzed with the
proposed conduction scales. All of the data used show
a good correlation with each other. It is noted that
the controversial similarity layer with a temperature
gradient of —4/3 slope does exist in the interior of the
fluid at about z, > 15.

Finally, based on the conduction scales, a wall-
layer model for the mean temperature gradient profile
is formulated, which may be used to fill the com-
putational gap between the wall at z, = 0 and the
computational lower boundary point at a certain
point off the wall z, # 0 from which computational
turbulence model equations at a certain closure level
may be integrated.
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ANALYSE D’ECHELLE ET MODELE DE COUCHE PARIETALE POUR LE PROFIL DE
TEMPERATURE DANS UNE CONVECTION THERMIQUE TURBULENTE

Résumé—Trois systéemes d’échelles caractéristiques pour la couche de conduction, la couche de transition
et la couche de convection sont proposés pour analyser la structure thermique moyenne dans une convection
thermique turbulente sans mouvement moyen. Ces échelles sont formulées a4 partir d’'une contribution
moléculaire ou turbulente des transports de quantités de mouvement et de chaleur dans chaque couche.
En utilisant les échelles proposées et une technique de gradient a I'interface entre deux couches adjacentes,
on rétablit la structure multi-couches de Kraichran (Physics Fluids 5, 1374 (1962)) du profil de gradient de
température moyenne. Si les échelles de conduction sont utilisées avec les données de gradient de tem-
pérature moyenne non dimensionelle prés de la paroi, elles forment une courbe de corrélation plausible
qui est presque indépendante des nombres de Prandtl et de Rayleigh pour le domaine des expériences. Par
cette courbe, on voit que la couche de convection ou la couche de similitude avec la pente —4/3 commence
a apparaitre aprés environ z, ~ 15 et le coefficient de proportionnalité a la loi de puissance —4/3 du
gradient de température moyenne est d’environ 0,6 soit d®, /dz, = 0,6z7%°, 00 ©, et z, sont la température
et la distance réduites par les échelles respectives de conduction. Ensuite un modéle de couche pariétale
pour le profil du gradient de température est formulé en accord avec la loi-puissance, d®, /dz, ~z7"* a
travers les couches, lequel est en accord convenable avec les données.
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ANALYSE DER CHARAKTERISTISCHEN GROSSENMASZE UND
WANDGRENZSCHICHT-MODELL FUR DAS TEMPERATURPROFIL BEI TURBULENTER
THERMISCHER KONVEKTION

Zusammenfassung—Es werden drei Sitze fiir die charakteristischen GrofenmaBe der Wirmeleitungs-
grenzschicht, des Ubergangsbereichs und der Kovektionsgrenzschicht vorgeschlagen, um die mittlere
Temperaturverteilung bei turbulenter thermischer Konvektion zu untersuchen. Diese GroBenmaBe werden,
basierend auf dem Beitrag der molekularen oder turbulenten Wirbel zum Impuls- und Wirme-
transport, in jeder Schicht formuliert. Unter Verwendung der vorgeschlagenen GréBenmaBe und einer
Gradientenanpassungs-Technik an der Grenzfliche zwischen zwei benachbarten Schichten wird die
mehrschichtige Struktur des Profils des mittleren Temperaturgradienten nach Kraichnan wiederhergestellt
(Physics Fluid 5, 1374 (1962)). Wenn man die Abmessung der Warmeleitungsgrenzschicht dazu benutzt,
die Werte des mittleren Temperaturgradienten in Wandnihe dimensionslos zu machen, dann ergeben diese
eine einleuchtende Korrelationskurve, die im Bereich der experimentellen Daten unabhéngig von der
Prandtl-Zahl und der Rayleigh-Zahl ist. Anhand der Korrelationskurve zeigt sich, dafl die Konvektions-
grenzschicht oder die Ahnlichkeitsgrenzschicht mit der Steigung —4/3 bei z, ~ 15 beginnt und die Pro-
portionalitits-Konstante des —4/3 Potenzgesetzes fiir den mittleren Temperaturgradienten ungefahr 0,6
betrigt (d.h. dO, /dz, = 0,6z7**. Dabei bezeichnen ®, und z, die dimensionslose Temperatur bzw.
den dlmensmnslosen Wandabstand unter Verwendung des GroéBenmaBes der Warmelentungsgrenzschlcht
Daritber hinaus wird in Ubereinstimmung mit dem Potenzgesetz d®,/dz, proportional z;* ein
Wandgrenzschichtmodell fiir das Profil des mittleren Temperaturgradienten quer durch alle drei
Schichten aufgestellt, das die MeBwerte gut wiedergibt.

UCITIOJIB3OBAHHUE AHANHN3A MACIHITABOB U MOZAEJIK MPUCTEHHOTI'O CJIOA AJiA
ONPEAEJIEHNA NMPO®UJISt TEMITEPATYP IPU TYPBYJIEHTHOM TEIJIOBON
KOHBEKILIMH

Ammoramms—C Ueibl0 aHAJNHM3a cpelHel TEIUIOBOH CTPYKTYpBI B YCNOBHsX TypOyJeHTHOH TeIuoBo#
KOHBEKLIHH NPH OTCYTCTBHH CPEIHEro ABHXEHHS NPELIOXEHbl TPH GOPMYIHPOBKH XapaKTepHbIX MacLl-
Tab0B UM MPOBOAMAILEro, MEPEXOAHOTO W KOHBEKTHBHOTO CJIOEB. YKa3aHHBIE BbIpaXeHHS (OPMYJIH-
PYIOTCS MCXOZIs B3 MOJIEKYJIAPHOrO HJIM BHXPEBOTO BKaAa B MEPEHOC MMITYJILCA M TEILIA B KaXIOM CJIOe.
C noMouipio MpeUIOKEHHBIX MacwTaboB M I'PaAMEHTHOTO METOJA CpALIMBAHUS HAa CPaHMUE HBYX
CMEXHBIX CJIOEB BOCCTAHAB/IMBaeTcs onucbiBaeMas KpaitunanoM (Physics Fluids §, 1374 (1962)) mHoroc-
JofiHas CTPYKTypa NMpodmis cpeaHeTeMIepaTypHbIX T'DaMeHTOB. B ciaydae npumenenus maciutabos
TENIONPOBOJHOCTH M1 00e3pa3MepHBaHus OaHHBIX IO CPEHHETEMIEPATYPHOMY IpafHEHTY BOJHM3H
CTEHKH moJyyeHa o6o6uiaiomas KpuBas, IOYTH He 3aBHCAINAA OT 3Ha4eHui vucen [Ipanarns u Panes B
HCCIIEYEMOM B 3KCNIEPHMEHTE auana3oHe. VI3 nosydeHHOW KPHMBOH CIICAYET, YTO KOHBEKTHBHBIH KM
aBTOMOJIEJILHBIA CJIOH C HAKJIIOHOM, paBHbIM —4/3, BO3HHKAET NPHMEPHO Mocie z, ~ 15, a Takxe, 4TO
K03(HIHMEAT NMPONOPUHOHANLHOCTH CTENEHHOMN 3aBHCHMOCTH —4/3 cpeaHETEMIEpaTyPHOTO IrpaauenTa
coctasnseT npumepHo 0,6 wi dO, /dz, = 062743, rue O, u z,-Ge3pa3MepHble TeMmepaTypa u pacc-
TOSHHE B COOTBETCTBYIOLIMX Maciutabax mnposoauMocTH. Ha ocHoBe cTeneHHO# 3aBHCHMOCTH
d®,/dz, ~ z.* chopMynmpoBaHa MOJeNb MPUCTEHHOrO CNOA UIA Npodmiis CpeaHeTeMIEpaTyPHBIX
TPaJIMEHTOB B CJIOAX, KOTOpas COPOILO COIACYeTCs C IKCIIEPUMEHTAIbHBIMU JaHHBIMH.
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